
Chapter 3

Mathematical models

3.1 Introduction

A mathematical model is an equation which is intended to match or model the
behavior of some natural quantities.

Exponential functions are found in many mathematical models. Exponential, surge
and logistic models make use of exponential functions and are described in sections
3.2 to 3.4.

3.2 Exponential models

Exponential growth and decay models have the form

y = Aebt, t ≥ 0

for constants A and b, where independent variable t usually represents time.

(a) Growth Model: b > 0 (b) Decay Model: b < 0
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Exponential growth models1 are typically used to model populations that have a

1Also known as Malthusian models

12



3.2. EXPONENTIAL MODELS 13

constant percentage growth rate due to an unchanging environment.2 Populations
can range from micro-organisms to people.

Exponential decay models are typically used to model the loss of matter that has a
constant percentage decay rate.3 Examples include herbicides, radioactive materials
and the elimination of medicines from the body.

Example

population
growth

The population of a rabbit colony grows according to the exponential growth
model

P (t) = 60 e1.6t

where time t is given in years.

This model shows that . . .

• the initial population was

P (0) = 60 e1.6×0 = 60 rabbits

• at t years, the population grew at the rate
dP

dt
= 60× 1.6 e1.6t

= 96 e1.6t rabbits per year

• the constant growth rate per head of population was

dP

dt
÷ P =

60× 1.6 e1.6t

60 e1.6t

= 1.6 rabbits per year per head of population

. . . a growth rate of 160% per year.

The model can also be used for predictions :

(a) After 5 years there will be

P (5) = 60 e1.6×5 ≈ 7291 rabbits

(b) The time taken for the population to reach 10,000 can be found from
solving the equation 60 e1.6t = 10000.

60 e1.6t = 10000

e1.6t = 10000/60

1.6t = ln(10000/60)

t =
ln(10000/60)

1.6
= 3.2 years

2percentage growth rate = growth rate per head of population × 100 %
3percentage decay rate = decay rate per amount of material × 100 %
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Example

bacterial
growth

The amount of live bacteria in a Petri dish is modelled by the formula

M(t) = 50 e0.18t gm

after t days.

You can see that

• the initial amount of live bacteria was

M(0) = 50 e0.18×0 = 50 gm

• the bacterial grew at the rate

dM

dt
= 50× 0.18 e0.18t

= 9 e0.18t gm/day

• the constant growth rate per gram was

dM

dt
÷M =

50× 0.18 e0.18t

50 e0.18t

= 0.18 gm/day per gram

. . . a growth rate of 8% per day

Example

decay
model

In laboratory conditions, the mass M(t) of a pesticide decayed according to
the exponential decay model.

M(t) = 10 e−0.15t gm

after t days.

The model shows that

• the pesticide decayed at the rate

dM

dt
= 10× (−0.15) e−0.15t

= −1.5 e−0.15t gm/day

• the constant decay rate per gram was

dM

dt
÷M =

10× (−0.15) e−0.15t

10 e−0.15t

= −0.15 gm/day per gram

. . . a decay rate of 15% per day
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Newton’s Law of Cooling models how the temperature T (t) of an object changes 4

from an initial temperature of T (0) when it is placed in an environment having
temperature Tenv.

T (t) = Tenv + (T (0)− Tenv)e
−kt

Example

heat
transfer

A turkey is cooking in a convection oven which is at a baking temperature of
200◦C. The turkey starts at a emperature of 20◦C and after a half hour has
warmed to 30◦C. How long will it take to warm to a well-done temperature
of 80◦C?

Answer

We need to find k first of all. As turkey took 30 min to heat from 20◦C to
30◦C, we have

30 = 200 + (20− 200)e−0.5k

e−0.5k =
170

180
k = 0.1143

To find the time taken to heat to 80◦C, solve

80 = 200 + (20− 200)e−0.1143t

e−0.1143t =
120

180
t = 3.5 hours

Exercise 3.2

1. A population of bacteria is given by P (t) = 5 000 e0.18t after t hours.

(a) What is the population at

(i) t = 0 hours (ii) t = 30 minutes (iii) t = 2 hours?

(b) How long would it take for the population to reach 15 000 ?

(c) What is the rate of increase of the population at

(i) t = 0 (ii) t = 30 min ?

4The model can be used to for general heat transfer problems, not just cooling ! It is generally a
very good approximation, though there are exceptions when the heat transfer is primarily through
radiation, like the transfer of heat from the sun to the earth, or from the heating element in an
oven. One of the best applications is for home heating. How much heat is lost through the walls
of a house during winter? How much fuel is saved by adding insulation in the walls?
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2. The mass M(t) of a radioactive isotope remaining after t years is given by
M(t) = 5 e−0.005t grams.

(a) What is the mass remaining after

(i) t = 0 hours (ii) t = 6 months ?

(b) How long would it take for the mass to decay to 1 gram ?

(c) What is the rate of radioactive decay at

(i) t = 1 year (ii) t = 100 years ?

(d) Show that M ′(t) = 0.005×M(t)

3. Diabetics with type 1 diabetes are unable to produce insulin, which is needed
to process glucose. These diabetics must injection medications containing
insulin that are designed to release insulin slowly. The insulin itself breaks
down quickly.

The decay rate varies greatly between individuals, but the following model
shows a typical pattern of insulin breakdown. Here I represents the units
of insulin in the bloodstream, and t is the time since the insulin entered the
bloodstream in minutes.

I = 10 e−0.05t

(a) explain what the value 10 tells about the amount of insulin in the blood-
stream.

(b) What is the rate of breakdown in insulin in the bloodstream at time t?

4. A population grows according to the model P (t) = P (0)ert where time t is in
years.

(a) Show that the growth rate
dP

dt
is proportional to P (t).5

(b) Show that the growth rate per head of population is r.

5. Show that Newton’s Law of Cooling implies that the rate of change of the
temperature of an object is proportional to the difference between the object’s
temperature and the temperature of the environment, that is

dT

dt
∝ (T (t)− Tenv) .

5Two quantities, Y and X are said to be proportional, in symbols Y ∝ X, if Y is equal to a
constant multiple of X. The constant is called the constant of proportionality.
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3.3 Surge models

Surge models have the form
y = At e−bt, t ≥ 0

for constants A and b, where independent variable t usually represents time.6

-�

6

?
0 t

y smaximum

pppppppp
pppppppp
pppppppp
pppppppp
ppppppp

1

b

s point of inflexion

pppppppp
pppppppp
pppppppp
ppppp

2

b

Surge models are used in Pharmacokinetics to model the uptake of medication.
There is a rapid increase in concentration in the bloodstream after introduction by
ingestion, injection, or other means, then a slow elimination through excretion or
metabolism.

Exercise 3.3

1. After an aspirin tablet is ingested, the amount entering the bloodstream is
modelled by M(t) = 100te−0.5t mg, t hours after its absorption into the blood-
stream has begun.

(a) How much aspirin is in the bloodstream after

(i) t = 0 hour (ii) t = 1 hour (iii) t = 2 hours?

(b) When is the amount of aspirin in the bloodstream a maximum, and what
is the maximum?

(c) What is the point of inflection of the graph of M(t) = 100te−0.5t. What
is the significance of this point?

2. The amount of aspirin entering the bloodstream is modelled closely by

M(t) = Ate−bt mg,

t hours after initial absorption into the bloodstream, where A and b can be
varied according to the type of tablet and amount of aspirin used.

6This is a special case of the general Makoid-Banakar model in which the amount of dissolved
drug at time t is given by

d(t) = Atne−bt, where A,n, b > 0.
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What should the values of A and b be if the the maximum amount of aspirin
in the blood was 120 gm at t = 2 hours?

3. What is the turning point of the curve y = Axne−bx, where A, n, b, x > 0 ?
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3.4 Logistic models

Logistic models have the form

y =
C

1 + Ae−bt
, t ≥ 0

for constants A, b and C, where independent variable t usually represents time.

y = C asymptote
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Logistic models are used to model self-limiting populations where growth is restricted
by competition for limited resources.7 The number C is called the carrying capacity
of the population.

Exercise 3.4

1. The population of a new colony of bees after t months is given by

P (t) =
50 000

1 + 1000e−0.5t

(a) What is the initial population of the colony?

(b) What is the carrying capacity of the colony.

(c) How long will it take the population to reach 40 000?

(d) Show that P ′(t) ≥ 0 for all t ≥ 0, and interpret this.

(e) Find when the population growth rate is greatest.

2. Show that the logistic function

y =
C

1 + Ae−bt
, t ≥ 0

has a point of inflexion at

(
lnA

b
,
C

2

)
.

7The logistic function was discovered by Pierre F. Verhulst in 1838, and is also called the
Verhulst equation. The shape of the graph is sometimes referred to as S-curve or a Sigmoid curve.



Appendix A

Answers

Exercise 1.2

1(a) 5ex 1(b) 7e7x 1(c) −100e−5x

1(d) −2 exp(−2x) 1(e) 10e5x 1(f) 12x2 + 10− ex

1(g) 12e4x + 4x 1(h) 5(ex − e−x) 1(i) 9e3x + 6e2x

1(j) −e−x + ex − 2e−2x 1(k) −6e−2x 1(l) −5e−x

2(a) (x + 1)ex 2(b) (2x− x2)e−x 2(c)
1 + 4x

2
√
x

e2x

2(d)
2(x− 1)

x2
ex 2(e)

−e−x

(1− e−x)2
2(f)

2ex

(ex + 1)2

3(a) 6e2x(e2x + 1)2 3(b)
−e−x

2
√

1 + e−x
3(c)

−e2x

(1 + e2x)3/2

3(d)
2 + 2ex + xex

2
√

1 + ex
3(e) 2(x + 1)e(x+1)2 3(f)

xe
√
x2+1

√
x2 + 1

4. y′(0) = 20 ln 3

6(a) turning point (0, 0); global minimum

6(b) turning point (−1/2,−1/2 e−1); global miminum

6(c) turning point (0, 0); global maximum

6(d) turning point (1, 2e−2); local minimum
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Exercise 2.1

1(a) ln 5 1(b) not possible 1(c) 1
2

ln 7

1(d) − ln 0.1 or ln 10 1(e) 1
2

ln 16 or ln 4 1(f) ln 2

1(g) 0 or ln 2 1(h) ln 2 1(i) 0

2(a) −1 or 2 2(b) 6

Exercise 2.2

1(a)
5

x
1(b)

1

x
1(c)

20

x

1(d)
1

x
1(e)

2

x
1(f) 12x2 + x− 1

x

2(a) lnx + 1 2(b) (2 lnx + 1)x 2(c)
ln(2x) + 2

2
√
x

2(d)
(x lnx + 1)ex

x
2(e)

2(1− lnx)

x2
2(f)

lnx− 1

2 ln2 x

3(a)
3 ln2 x

x
3(b)

1

2x
√

lnx
3(c)

1

x + 1

3(d)
2x

x2 + 1
3(e)

1

x
+

2x

x2 + 1
3(f)

2x

x2 + 1
+

2x

x2 + 2
+

2x

x2 + 3

Exercise 3.2

1a(i) 5000 1a(ii) 5471 1a(iii) 7167

1(b) 6.1 hours 1c(i) 900 bacteria/hour 1c(ii) 985 bacteria/hour

2a(i) 5 gm 2a(ii) 4.99 gm 2(b) 322 years

2c(i) 0.025 gm/year 2c(ii) 0.015 gm/year

3(a) initial amount 3(b) 0.5e−0.05t units/min
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Exercise 3.3

1a(i) 0 mg 1a(ii) 60.7 gm 1a(iii) 73.6 gm

1b(i) 2 hours 1b(ii) 200/e mg

1c(i) 4 hours 1c(ii) rate of elimination is greatest

2(i) b = 0.5 2(ii) A = 60e

3.
[n
b
,A
(n
b

)n
e−n
]

Exercise 3.4

1(a) 49 or 50 1(b) 50 000 1(c) ≈ 16.6 months

1d(i) P ′(t) =
25000e−0.5t

(1 + 10e−0.5t)2
> 0 1d(ii) P(t) is increasing

1(e) t = 13.8 months




